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LETTER TO THE EDITOR 

Finite-size electrical resistivity and resistance in fractalst 
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Departamento de Fisica, Pontificia Universidade Cat6lica do Rio de Janeiro, C P  38071, 
22453 Rio de Janeiro RJ. Brazil 

Received 21 August 1987, in final form 4 November 1987 

Abstract. It is shown that, from an ansatz recently proposed by Dekeyser er al for anomalous 
diffusion and electrical resistance in fractals, one can derive predictions for the relation 
between intensive (resistivity) and extensive (resistance) quantities in these structures, 
which differ from the usually assumed forms. Numerical predictions for the ratio of 
finite-size resistance to resistivity in percolation clusters in space dimensions 2 =s d 6 are 
made, which are amenable to testing via, e.g., Monte Carlo simulations. 

The transport properties of fractals, notably diffusion and electrical conductivity (or 
resistivity) have attracted considerable interest recently (see, e.g., Pietronero and Tosatti 
1986 and references therein). As regards electrical current-conduction aspects, two 
physical quantities are usually studied: the resistance of a sample (an extensive 
parameter) and the resistivity p (or its inverse, the conductivity a) ,  which is a local 
property. For homogeneous, non-fractal substances ( T - ~  = p = constant (independent 
of sample size), and elementary series-parallel arguments give for the resistance a( R )  
of an R d  hypercube: 

a ( R )  = ( T - ’ R * - ~ .  (1) 

Close to the critical probability p c ,  the incipient infinite percolation cluster displays 
a fractal structure when viewed in length scales R such that lattice spacing << R<c 
correlation length { ( p )  - Ip -pCI-”. The exponents 4‘ and t are defined by: 

- IP -Pel-< ( 2 a )  

4 P )  - IP -Per (26) 
(see, e.g., Fisch and Harris 1978). 

Finite-size scaling then gives, for R G 6, 

R ( R )  - R”” (3a) 

a( R )  - R-””. (36) 
Note that conductivity, which is in principle a local property, now depends on sample 
size. This reflects the fractal’s lack of translational symmetry. For further comments 
on scale-dependent ‘local’ properties such as conductivity or diffusion coefficient, and 
a discussion of crossover between ‘anomalous’ and ‘classical’ regions, see Gefen er a1 
(1983). 
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In order to relate the exponents 5 and t, assumptions must be made on the structural 
relationship between the (local) conductivity and the electrical resistance of a finite-size 
fractal sample. By assuming a simple ‘nodes and links’ model for the percolation 
cluster, de Gennes (1976) proposed that 

I =  t + ( 2 - d ) v  (4) 

which essentially amounts to assuming that, in the fractal, the combined resistance of 
a finite sample can be obtained from the local resistivity in the same way as in a 
compact (Euclidean) structure (see (1) above). An equivalent assumption is made 
also for non-random fractals such as the Sierpinski gasket (Gefen er a1 1984). 

In this letter, we show that it is possible to extract an alternative expression relating 
and t, from an ansatz reccntly proposed by Dekeyser et a1 (1987) for anomalous 

diffusion and electrical resistance in fractals. We calculate the amount by which such 
an expression differs from (4) above; we then analyse available data l and t. We show 
that, although existing data are not incompatible with the existence of corrections such 
as those predicted here, it seems that a final conclusion cannot be drawn as yet. We 
think that accurate calculations of 4‘ and t separately would be welcome, in order to 
establish the precise way in which these quantities relate to each other, thus providing 
a clearer understanding of the dynamics of fractals. 

Dekeyser et a1 (1987) assume that current is carried in a fractal along paths which 
are self-avoiding walks (SAW). Assuming that the number of steps in a SAW on a fractal 
cluster scales with its end-to-end distance as 

N s A W -  RdSAW(ln R ) 6  ( 5 )  

and that the average end-to-end distance R,, of a random walk ( R W )  on a fractal 
cluster of Hausdorff dimension d varies with the number of steps N as 

R i W -  N2’d*(ln N)’*. (6) 

Dekeyser er a1 (1987) give a Flory-like argument, in which energy scales as 
NgAw/Rd, and entropy as R2/Riw.  From the balance of the two terms it is easy to 
obtain 

(7a)  d,AW = i ( 2  + d ) / (  1 + d ; ’ )  

a / (  1 + & I ) .  (76) b = -  

Equation (7a) is equation ( 7 )  of Dekeyser et ul(1987); equation ( 7 b )  is not quoted 
there. If the fractal is itself a two-dimensional R W  cluster (which was those authors’ 
main concern), the existence of logarithmic corrections to the number of distinct visited 
sites (Montroll and Weiss 1965) is a plausibility argument for a # 0 (then b # 0, by 
(76)).  In the case treated here, that of percolation clusters, logarithmic corrections 
are not to be expected, thus we assume (Y = b = 0 in what follows. At the end of this 
work, we shall return briefly to RW clusters. 

In the ansatz of Dekeyser et al, it is assumed that the current-carrying paths along 
the fractal are SAW (instead of essentially straight lines, as in homogeneous systems) 
in parallel; further, it is assumed that essentially the whole fractal takes part in 
conduction, so the number of parallel paths is proportional to the total number of 
bonds divided by the number of bonds in a path. Thus, one obtains 

n ( ~ ) -  N;,.,,(R)R-~ (8) 
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where d is the fractal dimensionality. Since results obtained from (8) are in very good 
numerical agreement with other estimates for the percolation cluster in d = 2 (Dekeyser 
et a1 1987 and references therein), the ansatz must carry some truth in it, at least for 
the case of two-dimensional percolation. Those authors actually used the backbone 
fractal dimensionality dB and the value of d E for RW confined to the backbone in their 
calculation of N s A W  according to (7a)  above, they also consistently used dB as the 
fractal dimensionality in (8). Equally accurate results are obtained if, throughout the 
calculation, one uses the fractal dimension of the full cluster and the random-walk 
dimension of walks allowed over the full cluster; this reflects a relation between 
backbone and full percolation cluster which has been discussed in detail by Stanley 
and Coniglio (1984). 

On the other hand, Einstein’s relation between conductivity U, density n and 
diffusion coefficient D = d(RkW)/dt, namely (+ = nD, gives for the conductivity on the 
scale R of a sample of linear size R,,> R at the percolation threshold: 

U - ~ , d - d ~ Z - d > %  (9) 

(the first factor comes from n - RGP/”, as given by finite-size scaling; the second comes 
from the definition of D and R k W -  N2ld*). 

In order to relate R(R)  and U, we now write 

O ( R ) - K ’ ( R ) R B .  (10) 

In order to satisfy (8) (with N s A W  given by ( 7 a ) )  and (9) (assuming Ro- R),  one must 
have 

(1 + d - d , )  
B = 2- d + d, 

d,+1 ’ 

Thus, the ansatz of Dekeyser et a1 (1987) gives 

(1 + d - d,) _ - _  ‘- + 2 - d  +d, 
v v  dw,+ 1 

differing from (4) by the last term on the right-hand side. In order to calculate this 
term, one must be careful: most papers in which an estimate for d, is reported are 
studies of the relationship between dynamical (e.g., t )  and static (e.g., v, p )  exponents 
in which assumptions equivalent to (4) above are made (Alexander and Orbach 1982, 
Rammal and Toulouse 1983, Daoud 1983, Stanley and Coniglio 1984). This may 
introduce an undesired bias in our results. In order to circumvent this problem, we 
use estimates of d, obtained without specific assumptions about the relation between 
static and conductivity (or conductance) exponents. We refer to the extensive Monte 
Carlo simulations of Rammal et a1 (1984) from which the spectral dimension 2 of 
percolation clusters in Euclidean dimensions 2 S d S 6 is directly extracted, with the 
result 1.322 s d‘ s 1.332. Thus, together with the relation d ,  = 2d/d,  which is obtained 
under very general assumptions on the structure of diffusion and wave equations 
(Rammal and Toulouse 1983), gives the desired bias-free estimates of d, used in 
table 1. 

Physically, the absolute values of the estimates given in table 1 are expected to be 
upper bounds for the actual corrections. To see this, recall that B = 2 - d  would 
correspond roughly to the current propagating along ‘straight’ paths on a compact 
structure, while the ansatz of Dekeyser et a1 assumes propagation alongs SAW on the 
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Table 1. Corrections given by equation ( 1  1) for percolation clusters. Error bars are related 
only to the uncertainty in d‘ as calculated by Rammal et a1 (1984) (see text). In d = 2, the 
(presumably exact) d=91/48  has been used. For d 2 3 ,  d is as given by Stauffer (1979). 
In d = 6 ,  the mean-field values d = 4, d,  = 6 are assumed. 

d d,(  1 + 6-  d , ) / ( d ,  + 1) 

2 +0.028 f 0.008 
3 -0.22 * 0.01 
4 -0.55 * 0.02 
5 -0.80 f 0.02 
6 - 9  = -0.857 . . . 

fractal, which are very tortuous (see the discussion in Fisch and Harris (1978), Coniglio 
(1982)). It is expected that truth must lie somewhere in between these pictures. 

Note that corrections are negative for all dimensions except d = 2; this arises from 
d ,  > d +  1 in (11) for d 23, which can be traced back to the fact that in higher 
dimensions ‘cutting bonds’ (Coniglio 1982) are relatively more important in the struc- 
ture of the percolation cluster (Gefen et a1 1981). Thus, trapping within ‘blobs’ is the 
physical ingredient responsible for the increasing values of d ,  as d grows. 

Turning to existing data for comparison, we see that very accurate calculations (to 
be quoted below) have been performed for the conductivity exponent t /  v in d = 2 and 
3 without use of (4) or similar assumptions. However, as regards the exponent L/v, 
which has been directly calculated in 2 < d S 6 by Fisch and Harris (1978) by series 
expansions (see also de Arcangelis et al(1985a) for a calculation with similar accuracy), 
the situation is as follows. In d = 2 those authors’ error bar for l/  Y (10.02) is roughly 
the size of the corrections predicted in table 1, thus preventing comparison of these 
corrections against the more accurate values of t /  v reported recently. In d = 3, as we 
shall see below, the corrections predicted in table 1 are not inconsistent with the {/v 
values of Fisch and Harris taken together with recent estimates of t / v .  For d 2 4 ,  we 
know of no calculations of t independent of assumptions similar to (4). 

For d = 2, calculations have been performed for t /  v in order to check the validity 
of Alexander and Orbach’s (1982) conjecture by Zabolitzky (1984), Hermann er a1 
(1984) and Lobb and Frank (1984) (the latter authors’ ‘bulk conductance’ is identical 
to the conductivity). Their results are t /  v = 0.973 1 0.005 (Zabolitzky, Lobb and Frank), 
and t /  v = 0.997 1 0.010 (Herrmann et al). The result t /  v = 0.970 * 0.009 of Hong et a1 
(1984) is based on a relation between full cluster exponents and the corresponding 
backbone exponents derived by Stanley and Coniglio (1984), who assume that (4) 
holds for both sets of exponents. Thus, the identity d :  - dB = d ,  - d used by Hong et 
al is actually independent of the assumption of (9); so is their result (except for a 
corrective term [ d , ( d ,  + 1)-’ - d z ( d : +  l)-’](l+ d - d , )  = (1.0 x lo-‘) predicted by 
(11)). 

It is interesting to note that, for two-dimensional percolation, table 1 and the results 
for t / v  quoted above imply that the value of I / v  must be very close to unity 
(1.001 *0.009, using Zabolitzky’s estimate for t /  v). This means that, although the 
conjecture t /  v = 1 (Daoud 1983) certainly does not hold, I /  v = 1 is a possibly exact 
result for two-dimensional percolation. This in turn would imply that the breakdown 
voltage of a random-fuse network at p c  scales linearly with its linear size in d = 2, 
contrary to a deduction by de Arcangelis et a1 (1985b), and consistent with the findings 
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of Duxbury et a1 (1987) and of Kahng et a1 (1987) on this problem. Both these latter 
authors obtain linear scaling of breakdown voltage against size, plus logarithmic 
corrections. 

In three dimensions, Derrida eta1 (1983) report t /  v = 2.2 f 0.1 from a transfer-matrix 
calculation, which is presumably one of the most precise techniques available. Fisch 
and Harris (1978) report 5 = 1.12*0.02, which together with what seems to be the most 
accurate value for v in 3 ~ ,  namely v =0.88*0.01 (Heermann and Stauffer 1981) gives 
C / v  = 1.26f0.03. While (4) above apparently takes good care of these results, it is 
worth pointing out that Derrida et a1 (1983) warn of possibly large errors arising from 
the unknown value of the correction-to-scaling exponent w. Although their central 
estimate t / v = 2 . 2  comes from a best fit with w =0.9, those authors remark that 
correlation is not significantly worse over the range 0.5 S w S 1.5,  for which the extra- 
polated exponent t / v  varies between 2.5 and 2.05 (see figure 3 of Derrida et a1 1983). 
They conclude by stating that, should later research fix o sufficiently accurately, a 
revised estimate of t / v  would be obtainable from their graph. With the correction 
= -0.22 from our table 1, using 5 /  v as given by Fisch and Harris (1978), we obtain 
a central estimate of t /  Y = 2.48 (corresponding to w = 0.55), still within the region 
considered plausible by Derrida et a1 (1983). Of course, the present remarks do not 
purport to be conclusive; we feel that the existence of corrections such as those predicted 
here still has to be definitely proved (or else disproved by positive arguments). 

Finally, we briefly remark on the extension of the above arguments to the problem 
treated by Dekeyser et a1 (1987), namely that of diffusion on a two-dimensional RW 

cluster. Those authors find, from Monte Carlo data and series analysis, that the RMS 

distance covered by a diffusing particle on a two-dimensional RW cluster varies with 
time as ( R ) ” 2 -  t”dw(ln t ) “ ,  where the numerical values of d ,  and a are consistent 
with the conjecture d,  = 1/a = 3. This agrees with the results of Christou and Stinch- 
combe (1986), which give d,  slightly larger than 4, but is contrary to the work Havlin 
et a1 (1984) and of Helman et a1 (1984), where it is claimed that diffusion on a 2~ RW 

cluster should be normal because it is space filling, that is, d ,  = 2 and a = 0. Of course, 
the latter must eventually become true for long enough walks; however, for intermediate 
length scales, fractal behaviour appears, crossing over towards the classical region 
later on (see, e.g., Gefen et a1 (1983) for a similar discussion). From their Flory 
argument, Dekeyser et a1 reobtain d ,  = 3, but they are unable to reproduce (Y = f. This 
was because they assumed that R ( R )  - a - ’ ( R )  In R for the relation between resistance 
and conductance on a 2~ RW cluster. Following along the lines of the present work, 
we find it more natural to assume in the case Q ( R ) -  o-’(R)(ln R ) c  instead of ( lo ) ,  
where C is a free parameter to be extracted from the ansatz (note that for 2~ RW, 

d,  = 3  = d +  1 ,  so ( 1 1 )  above gives B=O and is then consistent with logarithmic 
corrections). Proceeding similarly to the argument for percolation clusters, we find 
C = a /2 .  We interpret this as signalling that, if a = f as given by the Monte Carlo and 
series analysis of Dekeyser et a1 (1987), then C =; and vice versa. 

In summary, we have shown that, from the ansatz of Dekeyser et a1 (1987) it is 
possible to derive predictions for the relation between intensive (resistivity) and 
extensive (electrical resistance) quantities in fractals, which differ from the usually 
assumed forms. From this, we have extracted numerical predictions for percolation 
clusters in 2 s  d 4 6, which can be tested by, e.g., Monte Carlo simulations. Brief 
comments have been made on the application of some ideas discussed here to diffusion 
in 2~ RW clusters. It is hoped that the ideas discussed here will contribute towards a 
better understanding of the dynamics of fractals. 
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